COMPUTATION OF STEADY AND UNSTEADY
QUASI—ONE—DIMENSIONAL VISCOUS/INVISCID INTERACTING
INTERNAL FLOWS AT SUBSONIC, TRANSONIC, AND SUPERSONIC
MACH NUMBERS

By

TIMOTHY W. SWAFFORD
DAVID H. HUDDLESTON
JUDY A. BUSBY
AND
B. LAWRENCE CHESSER

NSF ENGINEERING RESEARCH CENTER FOR COMPUTATIONAL FIELD SIMULATION
MISSISSIPPI STATE UNIVERSITY

JUNE 1992 .
(NASA-CR-1494521) CMPUTATION OF STEADY ANU
UMNSTEALY QUAST-ONE-DIMeENSTIONAL
VISCOUL/INVISCIN INTERACTING INTERNAL FLOWS
AT SURSONIC, TRANSUONIC, ANG SUPERSONIC MACH
NUMSERS Final Report (Mississippi State

ENGINEERING & INDUSTRIAL RESEARCH STATION

NG2-23555

uncluas
G3/34 (0106604

MSSU-EIRS-ERC-92-1



COMPUTATION OF STEADY AND UNSTEADY
QUASI-ONE-DIMENSIONAL VISCOUS/INVISCID INTERACTING
INTERNAL FLOWS AT SUBSONIC, TRANSONIC,

AND SUPERSONIC MACH NUMBERS

by

Timothy W. Swafford
David H. Huddleston
Judy A. Busby
and
B. Lawrence Chesser

Engineering Research Center for Computational Field Simulation
Mississippi State University

FINAL REPORT

NASA LEWIS RESEARCH CENTER
GRANT NO. NAG3-1170

June 1992



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...\ttt iv
ABSTRACT .« vttt ettt ettt e \
L INTRODUCTION ottt ete ettt iiiiaa st 1
IL. PART 1 — SUBSONIC AND SUPERSONICFLOWS .........ccoihnnviinnns 6
a. Formulation of EQUAtONS .. .. ....ccvtmiiiimirnernnanee e 6

b. Eigenvalue Structure of the System of EQUations .........c.oeeennnneneeeens 13

c. Numerical Method ... ...uvniniieeerttee e 17

d. Boundary Conditions ..........c..ceeiuiinrenreeni it 18

B, RESUIIS + .ottt et ettt e 19

1. Subsonic Diffuser (AXISYMMETIC) .. vvvnvvvvnvneern s 19

2. Supersonic Channel (Planar) ...........oeenvieimnnnnrnennereees 22

111 PART 2 — TRANSONIC FLOWS ... 27
a. Formulation of the Newton Scheme . ........oovviiiiniiineneenn s 28

b. Computation of the Jacobian Matrices ..........coovvrnerereeeeernes 32

c. Dissipation Model . ... ..ouviii e 33

Ao RESUIS + v vt ettt iie e ia i a e e 34

1. AGARD Test Case 1.2 (SymmetriC) .....convvnvrvimrniinnenrees 35

7. AGARD Test Case 1.3 (ASYMmMELTiC) ... vvvvorivvnnnvnnenneneenes 37

IV. SUMMARY AND CONCLUSIONS ... ... oo 40
REFERENCES ..t oetteeaa e e et i 43
) (61 0) 4 = T R 47

1. Generic Channel Configuration

2. Convergence Histories for Supersonic Constant—Area Duct (All Formulations)
3. Computed Unsteady Flow Parameters (All Formulations)
4
5

Eigenvalues of the L™ IN Matrix

Measured and Computed Subsonic Diffuser Parameters (Thinner Inlet Boundary—
Layer)

6. Measured and Computed Subsonic Diffuser Parameters (Thicker Inlet Boundary—
Layer)

AGARD Geometry
8. Navier-Stokes and BL1D Comparisons

Computational Grid and Boundary Conditions for Modified AGARD Geometry
(Navier-Stokes Simulation — Unsteady)

10. Time Variance of Navier—Stokes Parameters

ii



11. Navier-Stokes and BL1D Channel Parameters at I = 500
12. Navier-Stokes and BL1D Channel Parameters at 7 = 1000
13. Navier-Stokes and BL1D Channel Parameters at £ = 2000
14. Navier-Stokes and BL1D Channel Parameters at ¢ = 3000
15. Momentum Thickness Distributions at ¢ = 1000 (Navier—Stokes)
16. AGARD Test Case 1.2
17. AGARD Test Case 1.3
APPENDLIXES . .\t eetetitee st e eaee s s sttt
I FElementsoftheLand NMatrices .........oooevieiirrmnnnnennneees
II. Auxiliary Relations . ........oooiniiiineriiire e

M. Details of Navier-Stokes Computational Procedure .............ovenennns
NOMENCLATURE . ..ttt iittte et s e sttt

iii



ACKNOWLEDGEMENTS

Research reported herein was supported in part by the NASA Lewis Research Center under Grant
NAG?3-1170 with Dr. Jacques C. Richard as Technical Monitor, and also by the National Science
Foundation under the auspices of the Engineering Research Center for Computational Field Simula-
tion at Mississippi State University. This support is gratefully acknowledged. In addition, several
discussions with Dr. W. Roger Briley of the Engineering Research Center (ERC) for Computational
Field Simulation (CFS) concerning the ramifications of complex eigenvalues in relation to systems
of equations were extremely beneficial to this effort. Also, it was Dr. David L. Whitfield who sug-
gested trying the discretized—Newton scheme used in portions of this report, and many helpful
suggestions provided by him along the way added much needed interactions. This support is also
gratefully acknowledged. Finally, Mrs. Patty Pertuit had the patience of Job typing the manuscript,

and the authors appreciate her diligence and persistence.

iv



ABSTRACT

Computations of viscous—inviscid interacting internal flowfields are presented for steady and un-
steady quasi—one—dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled
with integral boundary-layer equations for unsteady, two—dimensional (planar or axisymmetric),
turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used
in most techniques reported previously in that the above mentioned equation sets are written as a
complete system and solved simultaneously; that is, the coupling is carried out directly through the
equations as opposed to coupling the solutions of the different equation sets. Solutions to the
coupled system of equations are obtained using both explicit and implicit numerical schemes for
steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields.
Computed solutions are compared with measurements as well as Navier—Stokes and inverse bound-
ary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the qua-
si—linear form of the coupled system of equations indicates the presence of complex eigenvalues for
certain flow conditions. Itis concluded that although reasonable solutions can be obtained numeri-
cally, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions

to the coupled system of equations.



I. INTRODUCTION
The study and analysis of internal flows has received significant attention over the past several de-
cades because the operation of many physical devices, particularly regarding aerospace-related
hardware, depend upon proper designs to achieve near—optimum operating characteristics. Exam-
ples of such devices include any configuration where the flow is confined and an exchange between
pressure and kinetic energy is desired (engine inlets, wind tunnel diffusers, rocket nozzles, etc.).
There devices can be geometrically complex as well as very viscous—flow dominated. Moreover,

certain configurations and conditions can result in unsteady flow (e.g., inlet buzz).

In the past, the design of these devices has, for the large part, depended upon empirically based meth-
odologies. More recently, computational techniques have played an increasingly important role in
the design process as hardware becomes less conservative and is required to operate “near the edge”
of the design envelop. As evidenced above, perhaps the most important physical flowfield charac-
teristics which need to be considered when attempting to computationally address internal flows are
effects associated with unsteadiness, viscosity, and multi-dimensions. Of course, the relative con-
wributions of these effects are dependent upon the geometry as well as which physical flowfield pa-
rameters are required to provide the “answers” fora given problem. For example, if the performance
(e.g., static pressure rise) of a subsonic axisymmetric diffuser is desired, it is very important that
viscous effects be well represented because diffuser performance is very sensitive, for example, to
the incoming blockage caused by the presence of the boundary layer. For this case, it can be argued
that unsteadiness and multidimensional effects play a secondary role. However, for cases where
boundary-layer separation is possible, significant unsteadiness may be present. For these cases the
capability to capture this unsteadiness within computation is important in order to gain engineering
insight into the physics. On the other hand, it is easy to identify cases where all of the above effects
play an important part in shaping the overall flowfield structure (e.g., a moving shock within an S—

shaped, asymmetric duct).

A thorough computational investigation of flowfields of this type requires solution of the full Re-

ynolds—averaged, multidimensional, time—dependent, Navier—Stokes equations. Of course, solu-



tion of these equations produces essentially all pertinent flowfield parameters. Therefore, assuming
that these solutions are of acceptable accuracy, it possible to perform parametric studies of a pro-
posed geometry/flowfield combination which could be used to significantly reduce the risk
associated with new hardware design. Unfortunately, obtaining numerical solutions to these equa-
tions for complex geometries and unsteady flowfields is expensive and time—consuming, even using
today’s largest and fastest supercomputers. Therefore, it is important to investigate alternative
means of performing compute-based parametric studies of proposed new hardware designs. How-
ever, it is equally important that these alternative techniques be capable of capturing as much of the
critical physics as possible to avoid “throwing the baby out with the bath water.” Consequently, iden-
tifying the physical aspects which tend to dominate the behavior of the flowfield associated with a

particular geometry is vital to the success of the alternative computational procedure.

It is obvious that some compromises must be made to reduce these computational requirements
while simultaneously retaining the desired physics. Deciding upon which compromise requires an-
swering the following question: “What are desired physics?” or stated another way, “Which physical
flowfield characteristics are we willing to approximate in order to reduce the overall computational
resource demands?” Unfortunately, the answer 10 either question is very problem dependent. For
example, elimination of viscosity effects from the Navier—Stokes equations results in the Euler
equations. Obviously, this reduced-equation set by itself can never be used to simulate the flow of
a viscous fluid, but can, however, be used to generate “reasonable” solutions for unsteady flow about
extremely complex, three—dimensional geometries, as demonstrated by Whitfield, et all who com-
puted the unsteady flow about three—dimensional transonic propfans using the Euler equations. The
precise meaning of “reasonable” relates to the above question(s). Thatis, an assumption was made
in Ref. 1, a priori, that viscous effects could be neglected for the configurations and flow conditions
to be investigated. Comparisons between measured and computed performance parame:ters1 indi-
cated that this assumption was indeed “reasonably” valid. Therefore, it could be argued that the com-
promise made to exclude viscous effects from the analysis did not contaminate the computed solu-

tions to the point of being unusable. However, it should be pointed out that this conclusion is based



on the original stipulation that (as an example) effects of viscosity and the ensuing ramifications of

its presence were of lower priority in the simulation.

Of the three aforementioned physical characteristics under consideration, the one likely to have the
most significant impact upon computational resource requirements concerns that of mulitidimen-

sions. This can be argued from the standpoint that the number of floating point operations required

for a given simulation is roughly proportional to (n"my2 + ndim)?, where n is the number of grid
points and ndim is the number of spatial dimensions. Of course, this proportionality is greatly depen-
dent upon the numerical scheme used to solve the equations, but at least gives an indication of how
quickly the cost of performing multidimensional simulations escalates. Similar to the arguments
given above for three—dimensional viscous and inviscid flows, the validity of compromise (i.e., re-
duction) in the number of independent spatial variables is problem dependent and is difficult to
judge, a priori, whether the resulting simulation adequately represents reality. As stated by Hirsch?,
“In all cases, however, the final word with regard to the validity of a given model is the comparison
with experimental data or with computations at a higher level of approximation.” Therefore, it is
the reduction in effects associated with multi—-dimensions, while retaining effects of unsteadiness
and viscosity, and solution of the resulting equations (for internal flows) which forms the basis and
underlying motivation of the present effort. In particular, the development of an engineering tool
through which preliminary estimates of unsteady internal flow processes can be generated using

available workstation—based hardware is sought.

One approach to achieve this is to seek solutions to the unsteady, two—dimensional Navier-Stokes
equations, or the unsteady two—dimensional Euler equations coupled with the steady (or un steady),
two—dimensional boundary—layer equations. While these are valid approaches, even the two—di-
mensional equations can result in nontrivial computational time requirements, particularly for un-
steady flow. However, use of the coupling approach (e.g., Euler coupled with boundary layer) has
significant resource—saving advantages Over that associated with solving the full Navier-Stokes
equations because of relaxed grid requirements in viscous regions>. Hence, the coupling approach

is adopted here, where equation sets valid for a particular region of the flowfield are used. Specifi-



cally, the Euler equations written for unsteady, quasi—one—dimensional (Q1D) flow are coupled with
integral boundary—layer equations for unsteady, two—dimensional turbulent flow over adiabatic
walls. The assumption is made that solutions to the coupled equations will yield results of en gineer-
ing accuracy. It must be emphasised? that the validity of using the simplified equations is very prob-
lem dependent and, similar to other analytical or computational techniques, requires experience and
engineering judgement with regard to whether the approach and/or computed solutions represent
reality. No attempts are made at quantifying specific classes of problems for which the approach
presented herein can be used. Attempts are made to quantify the validity of these assumptions (or

lack thereof) through comparisons with available experimental and computational sources.

An additional assumption fundamental to the coupling approach applied to internal flows is that the
flowfield within the channel contains an inviscid “core” (i.e., not fully developed) of fluid which
is allowed to interact with the viscous region near the wall. A schematic of this type configuration
is shown in Fig. 1. The displacement of mass caused by the presence of this viscous region has a

thickness of 8%, defined by

Qed = J (Qelte — QU) dy
0

which is exact for planar flow, but is only approximate for the axisymmetric case. However, the
above expression approaches the true mass defect length for axisymmetric flow when the local
boundary layer is thin compared to the local body radius3. Therefore, the analysis presented herein

is valid only for those cases where the boundary layer is small relative to the local body radius.

Results ensuing from this analysis is reported here in two parts. Part 1 is essentially a continuation
of efforts reported in Refs. 4 and 7 where an explicit numerical scheme was used to solve the system
of equations formed by writing the viscous and inviscid equations as one complete system. This
coupling methodology differs from those reported previously (e.g., 3,89y where the coupling was
performed between the solutions to the equation sets rather than the equations themselves. As dis-
cussed in Refs. 4 and 7, this approach is motivated by the observation that coupling the solutions

results in a scheme which can have convergence difficulties and is often not robust, particularly for



“strong” interaction cases. In additon, previous coupling schemes which use the steady, direct form
of the boundary—layer equations to solve for the viscous region for cases where boundary-layer sep-
aration occurs fail because this form of the boundary-layer equations are singular at or near separa-
tion3. (It should be noted though that the singularity can be avoided by using the so—called inverse
form of the equations3. However, because the formulation of the unsteady inverse form is not
unique, coupling of the viscous and inviscid equation sets is less than strai ght—forwardlo). As shown
by Moses, et alll, however, a simultaneous solution procedure (using the steady form of the laminar
boundary—layer equations and Laplace equation for the stream function) apparently removes the
separation singularity which makes the computation of separated flows possible using the direct
form of the boundary—layer equations. In an analogous manner, the present approach simultaneous-
ly solves the unsteady forms of the Q1D Euler equations and the unsteady integral boundary-layer
equations for turbulent flow for steady subsonic (both separated and attached) flows, as well as un-
steady supersonic (attached) flow cases. However, as discussed in subsequent sections, several of
the disadvantages which the present direct coupling approach sought to overcome have been re-
placed with other, perhaps more disheartening ones with regard to seeking numerical solutions of

the complete system of equations.



Il. PART 1 — SUBSONIC AND SUPERSONIC FLOWS

a. Formulation of Equations

Much of the following material is given in Refs. 4 and 7 but is repeated here to provide the necessary
background for the analysis presented in Part 2, and also for convenience to the reader not familiar

with previous efforts®’

The equations which form the basis of the present analysis are the unsteady momentum and mean—
flow kinetic energy integral boundary—layer equations for turbulent flow (for the viscous region,
Egs. (1) and (2)) and the unsteady Q1D Euler equations for no work and adiabatic flow (for the invis-

cid region, Egs. (3), (4), and (5)), and are written as a complete system as™’:

*aue ch

L oud") — U@ + pra(0MERY) + oaud GE — eatey =0 "
20uld6 + 8"~ 0] + 0B — DG + qizy(Reat)

+ 20036" — o3 — 20u3 L = 0 @

2 (0) + Zleated) = 0 ©

2 ouiet) + Lla +poa] = pedy =0 (4)

2EA + LlwdEe +poAl + pely =0 (3)

where A = area, p = density, u = velocity, p = pressure, E = total energy, t = time, and x = axial dis-
tance. Subscript ¢ has been added to the gas dynamic variables to denote “edge” values, taken to
be those associated with the inviscid core. Itshould be noted that the area A, by definition, represents

that part of the flow region which contains inviscid fluid. These equations have been non—-dimen-

sionalized using the dimensional parameters I%,ef(length), éo,  (density), and &0, - (velocity) where

a is the speed of sound and subscript 0, indicates upstream stagnation conditions, and * denotes
a dimensional quantity. In Egs. (1) and (2), k= 0 for planar flow or 1 for axisymmetric flow, where

the following integral length definitions have been used:
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0
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The skin friction and dissipation integral are given by

_ 21, (7)
T out
= T o(u
b= Io rwa)’(“e) dy ®)

where T and Ty are the local and wall shear stress, respectively.

To place the system of equations in a form amenable to numerical solution using explicit schemes,

the temporal derivatives of Egs. (1) through (5) are isolated, i.e.,

2 eues™) — g0 = by ©)
2[(0ui® + 8" = 09)] = 20uub = SDGF = b (10)
2 (0t) = b (11

2 (Qeuc) = b, (12)

SEA + p2h = bs (13)

where by through bs are defined by referring to Eqs. (1) through (5), respectively.

Reducing the equations further requires choosing a dependent variable vector. In Refs. 4 and 7, the

dependent variables used were



g = (0 ue Mc 6 HYY (14)

Once this choice is made, the temporal derivatives are expanded and the ensuing terms algebraically
manipulated to form a system of five simultaneous partial differential equations, which can be writ-

ten as:

0q _
| L'ﬁ = (15)
where L is a 5 x 5 matrix, and b is the right-hand-side vector containing spatial derivatives. Here
M, is the edge Mach number, 8 is the momentum thickness (Eq. 6b), and H is a shape factor defined

using integral lengths formed with kinematic properties, i.e.,

i (16)
H=17
where
5 =6 (17a)
g = I 5‘:(1—%)@ (17b)
0

The number of unknown parameters in Eq. (15) is ten, including those contained in the right-hand—
side vector b. Closure of the system of equations requires that all variables be expressed in terms
of the dependent variables. This was partially accomplished in Ref. 7 (and here as well) through
the use of several auxiliary relations involving boundary-layer integral length shape factors and the

perfect gas equation of state. Complete closure was accomplished in Ref. 7 by using the relation

T _

?’“=1+Z——1 2 (18)
7 )

e

which is justified so long as the gas is thermally perfect and that the gas is in a state of equilibrium

ateach cross—section. To illustrate how the above relation was used in Ref. 7, consider the following

expression for the total (stagnation) energy, written in dimensional form as

A A A Iy
E. = 08 + 30 e (19)

where &, is the internal energy given by (for a perfect gas)



A

€e = ¢ Te (20)
and &, is the constant-volume specific heat. It is obvious that the temperature must be expressed

in terms of the dependent variables. This was performed in Ref. 7 as follows. In non-dimensional

form, the internal energy becomes

ée _ év]ﬁe — [ 6\;] f“e TO,2 - 1 'IAwe TO,E (2 1 )
2 - 2 - Al A A - _ A A
ao, = agp,« YR)Tp.e To,» v =D To, T,

where fO,e is the local stagnation temperature and Ris the perfect gas constant. Making the defini-

tons
[ —1
fo= 2 =147 — M2 (22a)
T,
e = [yy — 1)fe] ™! (22b)
results in
A‘;‘ = &.T,, Q3)
a()'w

Therefore, the non—dimensional expression for total energy can be written

Ee = odado, + 3u2) 24)
where
T
To, = 5+ (25)
™

Differentiating the above expression for total energy results in derivatives of the quantity Tp . which
must be assumed constant or otherwise specified. Therefore, the assumption was made in Ref. 7
that the ratio of local to reference stagnation temperature was equal to one (constant), thus eliminat-
ing these derivatives. In addition, the above ratio also appears in several terms within the elements
of the matrix L. Although this is a good approximation for steady flows involving no heat transfer,
the validity of the assumption becomes questionable for unsteady flows, even with no heat transfer.

This can be seen by rewriting the energy equation (Eq. (5)) in terms of stagnation enthalpy,



ap.
2ok + LlowaAh) = A (26)

where hy is the stagnation enthalpy defined by

ho = he + Fu3 @7
Use of the continuity equation results in
Oy |, 00 _ 13 (28)
at € ax Qe ot

We can rewrite the left—hand—side of the above as a material derivative to finally arrive at

Dhy - 1 9Pe
Dt Q¢ ot

which is valid in the absence of work and heat flux. By using the energy equation in this form, it

29)

is straight—forward to see that changes in static pressure due to unsteadiness results in corresponding

changes in the stagnation enthalpy, and thus the stagnation temperature.

This situation can be avoided in at least two ways. One method is to express the internal energy

instead as
ée £‘V Te _ Te (30)
A2 A A —_
where
T, = 31)
Th o
From the definition of the sonic velocity
a2 A
=g = le o, (32
aO,oo TO‘co
and using the Mach number, it follows that
b __ u
2. Y- DM (33)

which is the desired result.

10



Another way to avoid making the constant stagnation temperature assumption is to replace Mach
number with static pressure as a dependent variable. To illustrate this, consider the perfect gas equa-

tion of state given by

b, = O RT. (34a)
or, in non—dimensional form,
T
p. = 25* (34b)
Therefore,
_ P
T, = P (34¢)

It follows that the Mach number can be computed as

A
_ Ue Ue
Me—T
a

. T2 3>

which again permits closure of the system.

Results ensuing from numerical schemes based upon all three formulations are presented in this re-
port. As discussed in subsequent sections, both explicit and implicit numerical methods have been
implemented. Whereas an explicit scheme has been utilized in all formulations, the implicit method

has been applied to only the formulation where pressure is used as a dependent variable.

Because of the possible ramifications regarding solutions computed using the original formulation
which assumes constant stagnation temperature’, a brief diversion will be taken at this point toinves-
tigate differences between computed steady and unsteady solutions resulting from the different for-
mulations. As mentioned above, numerical computations involving all formulations have been per-
formed using an explicit scheme (implementation of this scheme is discussed in Section IL.c). To
investigate differences in computed solutions ensuing from these formulations, results for a constant
area axisymmetric duct (10 radii in length) with a fixed entrance Mach number of 2 and a reference
Reynolds number of 5 million are presented. Converged (steady-state) solutions from these com-
putations are shown in Figs. 2 and 3. Figure 2a presents time histories of exit Mach number and it

can be seen that identical results are obtained at steady state for all formulations. Also, convergence

11



of both formulations which do not assume constant T, ,are seentobe essentially identical. Although

not shown here, all other pertinent flowfield parameters converge in a similar manner. In addition,
Fig. 2b illustrates convergence as measured by the root-mean—square residual of the velocity, de-

fined as
1 /2
ue 1 gt - up

where Nmax is the total number of grid points. It is of interest to note that although convergence to

machine epsilon (using double—precision floating—point operations) is achieved in approximately
40 (non—dimensional) time units (corresponding to approximately 400 — 700 time steps at a CFL
of 0.9), referring back to Fig. 2a indicates that the solution at the exit has stopped changing appreci-

ably in less than half that time.

As expected, the different formulations do not give the same results for unsteady flows, although
differences are observed not to be large, at least for the cases examined thus far. Computed solutions
from all formulations for an unsteady flow are illustrated in Fig. 3. This is a contrived test case pres-
ented in Ref. 7 for the duct mentioned above, where now the entrance Mach number is sinusoidally
varied at a non—dimensional frequency of 0.1 to yield an entrance Mach number with a mean value
of 2.0 and an oscillatory magnitude of 0.2. Fig. 3a compares computed exit Mach number solutions
based upon all formulations where the entrance (input) Mach number is also shown for comparison.
It can be seen that solutions from formulations not involving the assumption of T, = constant are
identical. Although these solutions are very similar to those from the original formulation, mini-
mum and maximum values of computed Mach number are seen to vary. Also, there is a very slight
phase shift regarding the (min,max) values of Mach number. However, as shown in Fig. 3b, differ-
ences in computed boundary-layer integral lengths are much less. The origin of these relatively
small differences can be seen in Fig. 3c which illustrates the time variation of stagnation temperature
at the duct entrance and exit, the former of which is constant, by definition. It can be seen that at

this axial location, the maximum variation of stagnation temperature is approximately three to four

12



percent. Therefore, an assumption of Ty . = constant (used in the original formulation) is reasonable,

at least for this degree of unsteadiness.

Although differences exist between computed unsteady solutions that are based upon different for-
mulations of the system of equations, these differences are remarkably small, at least for the test case
shown. However, because the formulation which assumes T = constant is inconsistent with regard
to the simulation of unsteady flows, either of the new formulations are the preferred methodologies
in this regime. This is particularly true if the present coupling methodology is to be applied to cases

involving both unsteady flow and added heat flux.

As discussed previously, the system of equations is written in terms of the coefficient matrix L, where
the elements of L vary according to the particular formulation. Elements of the matrix L (as well
as those of another matrix N, to be discussed next) are given in the Appendix for all formulations
discussed herein.
b. Eigenvalue Structure of the System of Equations

In Refs. 4 and 7, the approach to solve the system of equations (14) was to use semi—discretization
which results in a system of ordinary differential equations at each mesh point. The equations were
then solved with a two—stage Runge—Kutta scheme using first-order backward spatial differencing
throughout the computational domain. The exclusive use of upwinding was possible in Ref. 7 be-
cause for the cases considered, all eigenvalues of the coefficient matrix L -1 N were found to be
positive (as well as real, of course). The matrix L~ 1 N results from writing the system of equations

(14) in quasi-linear form

9q 1% _ -1
3t + L Nax = L™'d 37

where the matrix N is derived in similar fashion as is the matrix L. Also, the different formulations
discussed previously result in differences in various elements of the matrix N (similar to the matrix

L). Elements of the N matrix for all formulations are given in the Appendix.

It is of interest to examine the behavior of the eigenvalues over the expected range of the various

parameters upon which elements of the matrix L~ !N depend. Using isentropic relations between

13



local static and stagnation conditions, it is straight-forward to show that these elements (and thus
the eigenvalues) can be expressed in terms of M., H, and 8. Eigenvalue distributions as a function
of Mach number are shown (as lines) in Fig. 4 with both H and 6 used as parameters. The eigenva-
lues shown were computed using the elements of the L and N matrices resulting from the formulation
where M, was used as a dependent variable but Ty , was not assumed constant. (It is of interest to
note that eigenvalues computed using the formulation where p, is a dependent variable are virtually
identical to those shown). Because of the algebraic complexity of the matrix L ~ N, the eignevalues
were computed numerically using an iterative technique!2. Also plotted in these figures (as sym-
bols) are the eigenvalues associated with the Q1D Euler equations written as an isolated system (i,
U, +0g, and U, — ae). It should be noted that Reynolds numbers were evaluated assuming reference
(stagnation) temperature and pressure to be 520°R and 14.7 psia, respectively. This results in mo-

mentum thickness Reynolds numbers ranging from approximately 400 t0 480,000 for 0.001< 0<0.1.

Figures 4a—4e (6=0.001) illustrate eigenvalue behavior for 1.2 = H <6.0. It can be seen that for
shape factors less than approximately 2.0, all eigenvalues remain positive for Mach numbers greater
than one thus confirming observations in Ref. 7. However, this is not the case for higher values of
H as shown in Figs. 4d and 4e which indicate at least one eigenvalue becomes negative for Me >
1. Also, it is interesting to note that three eigenvalues of the complete system closely approximate

those of the inviscid equations for all values of H.

Perhaps the most interesting (or disturbing) aspect of eigenvalue behavior can be seen in Figs. 4d
and 4e which indicate the appearance of complex conjugate pairs at high shape factors and superson-
ic Mach numbers, where the range of Mach numbers within which this occurs decreases with in-
creasing H. While only the real partis plotted, the imaginary partis observed to be at least one order
of magnitude smaller than the real part. It should be noted that the appearance of complex eigenva-
lues seem to occur for shape factors high enough to be indicative of boundary-layer separation. Dis-
cussion regarding the ramifications of the appearance of complex eigenvalues is given at the end of

this section.
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One might hope that complex eigenvalues would occur only within arelatively small range of values
associated with the various parameters. Unfortunately, this is not the case which isillustrated in Figs.
4f through 4o. In Figs. 4f4j (1.2 < H <6.0,6=0.01), complex eigenvalues again appear, but only
for shape factors high enough to cause boundary-layer separation (which generally occurs for
2.8 < H =3.0, depending upbn the Reynolds number). The range of Mach numbers over which
this occurs is rather extensive at higher values of A . It should also be noted that significant deviation
from the inviscid eigenvalues has occurred at the higher values of momentum thickness, particularly
for higher shape factors. In addition, negative eigenvalues occur over the entire range of Mach num-
ber, again for higher values of H. This behavior is even more pronounced for very high values of
momentum thickness as shown in Figs. 4k—4o (1.2 < H <6.0,0=0.1). However, one could argue
that for 6=0.1 we have violated one of the fundamental assumptions regarding use of the coupling
approach; i.e., recalling that 6 has been non—dimensionalized by a reference length (usually the inlet
radius or half—height), a value of 6=0.1 indicates that the local momentum thickness is 10% of the
local radius. Assuming a shape factor of 1.5 and that the local radius variation is small compared
to that of the inlet (which is consistent with fhe Q1D assumption) implies that the displacement thick-
ness occupies 15% of the channel radius. Assuming further that the displacement thickness is
approximately 1/6 of the total viscous region implies that the flow is essentially fully developed
which, of course, violates our original stipulation that this not be the case. Therefore, Figs. 4k—40
should be interpreted as an illustration of how the eigenvalues behave toward the upper end of valid
parameter space. On the other hand, values of 8 in the range of 0.1 do not necessarily imply that
the channel is fully developed. For separated flows, integral lengths have the tendency to grow rap-
idly because of the large, retarded flow region near the wall. However, the overall viscous region
can remain small enough such that an inviscid core exits. Example of this are illustrated in subse-

quent sections.

The appearance of complex eigenvalues indicates that the system of equations in their present form
cannot allow solutions as a well-posed initial/boundary—value problem by integration over time.

This conclusion is based upon the work of Briley et al!3 who used the criterion set forth by Garabe-
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dian!4 “that it is natural to require that every root of the characteristic equation be real, as this ex-
cludes solutions that may grow exponentially with the time—like variable”!3. Therefore, exponential
growth in solutions of a system of equations (which supposedly represent certain physics) can be
attributed to numerical instability of the unsteady solution algorithm and/or to a mathematical set
of equations which is ill-posed for solutions as an initial value problem in time!S. Differentiating
between these two areas of concern for the present effort requires that the problem be separated into
its individual pieces, namely, physics, mathematics, and numerics. Thatis, the objective is to obtain
a valid mathematical representation (equations) of the physics and to numerically solve these equa-
tions in a stable manner to a specified order of accuracy. With regard to the physics of the inviscid
flow, it has been well established that the Euler equations represent a very good approximation to
the motion of a fluid in regions where effects of viscosity are neglible. However, with regard to the
physics of the boundary-layer flow, Whitfield6 encountered complex eigenvalues in seeking solu-
tions to the unsteady integral boundary-layer equations where time was used as an iterative parame-
ter to reach steady state. In addition, similar eigenvalue behavior was encountered in Refs. 10 and
17 in dealing with the unsteady, three—dimensional integral boundary-layer equations which, how-
ever, did not preclude obtaining reasonable numerical solutions1®17, Along these same lines, the
integral boundary—layer equations of the type used herein have been shown to yield good engineer-
ing approximations to viscous flows in regions where the usual boundary—layer assumptions are val-

id for both steady and unsteady regimes®!8.

Based upon the above discussion, it is reasonable to conclude that it is the approximate governing
equations which are the origin of the observed anomalies. While the system of equations used in
the present effort does not generally exclude solutions exhibiting exponential growth due to ill-
posedness, it is shown in subsequent sections that numerical solutions of engineering accuracy can
be obtained for those cases where either: (a) no complex eigenvalues are encountered, or (b) if com-
plex eigenvalues do appear, unbounded growth can occur but can be very slow, thus allowing reason-

able solutions to be computed.
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Because the method presented herein uses many of the same shape factor correlations and auxiliary
relations employed in Refs. 10 and 16, it s believed that the appearance of complex eigenvalues can
be attributed to the approximations introduced by these empirical and analytical relations; i.e., these
empirical relations and approximations are insufficient to define a well-posed set of approximate
governing equations. Of course, this situation calls for an analysis similar to that performed by
Briley!3 to attempt to locate the specific relations which cause the observed eigenvalue behavior.

Unfortunately, time and resource limitations preclude pursuing such an analysis.

¢. Numerical Method

Based upon the preceding discussion, a numerical scheme utilizing spatial difference operators other
than purely one—sided is required for the general case unless, of course, a completely upwind method
which uses spatial differences whose type depends upon local flowfield characteristics (eigenvalues)
is used (note this approach is not even applicable for situations resulting in complex eigenvalues).
Because of the algebraic complexity of the governing system of equations and the above concerns
regarding well-posedness, an upwind approach was deemed inappropriate. Therefore, in the inter-

est of simplicity, the predictor—corrector MacCormack scheme!? was utilized for the present effort.

MacCormack’s scheme can be applied to a scalar (or system of) conservation law(s)

ou of _
% T ax 0 G9
and is written as:
W1 = Wt — ANf (39a)
1{.n 1
urtl = 5(“*' + u;TTF) —zArAj?“ (39b)

where subscript ”i” and superscript "n” denote spatial and temporal indices, respectively. Also, V
and A denote first—order backward and forward difference operators, respectively. In an analogous

manner, we can rewrite the present system of equations as

9q Vo
Ft' + b =0 (40&)

where
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b = —L7 (40b)

MacCormack’s scheme is then implemented as:

q}—‘ﬂ_ = qF + Aidq} (41a)
where, for example,
dg* = b7 = - L7} (43)

In the predictor step, the vector function dq is evaluated using dependent variables computed at time
level n and inverting the matrix L at each mesh point. This inversion is carried out using an efficient
LU factorization!2. Spatial derivatives in the vector b are approximated (conservatively) using
first_order backward differences where variables are again evaluated at the nth time level. Similar
computations are performed during the corrector step, except that predicted values at time level
7 + 1 are used to perform the matrix inversion, and first—order forward spatial differences are used
to approximate spatial derivatives. Because this is a central spatial difference scheme, additional
numerical dissipation must be added to suppress unwanted oscillations. A simple fourth-order mod-
el used by Warming and Beam?0 was used and implemented by modifying the corrector step Eq.

(32b) above to give:

gt = %(Q? + 1) + 3Audgt T + ccad'q] (44a)

where20
87 = qthp — Mivy + 640 — 497 + qi2 (44b)
o= -1 (44c)

co = 1— CFL? (44d)
where CFL < 1 for stability. All solutions computed with this scheme were obtained with a CFL
number of 0.9.

d. Boundary Conditions

For supersonic inflow and outflow, all dependent variables were specified and extrapolated, respec-

tively. Conditions at subsonic inflow and outflow boundaries were treated by considering the invis-
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cid and viscous equations separately. That s, for sub sonic outflow, pressure was specified and densi-
ty, velocity, and boundary-layer parameters were extrapolated. Mach number was then determined
from velocity and the computed sonic speed. For subsonic inflow, the method proposed by Cboper
et al21 was used for the inviscid equations. By specifying inflow stagnation conditions, this method

jteratively solves for the variables T, pe, and u, using the equations (non-dimensional)

-1
To’e = Tg + 4 5 uZ’ (453.)
v/y—1
- T,
Pe = Po.e\T, . (45b)
C=u- @Zceze (439

where T is the temperature and a is the speed of sound. Cused in Eq. (35¢) is a “characteristic-like”
variable and is computed from information at the first mesh pointinside the boundary?!. Boundary-

layer parameters 0 and H are specified and held fixed at the inflow boundary.

e. Results

The objective of this section is to present comparisons between computations obtained using the
present interaction technique and measurements, as well as other computations. Subsonic and su-
personic results are reported in separate sections where subsonic comparisons are all for steady dif-
fuser flows, whereas supersonic computations are for both steady and unsteady channel flows. In

all computations shown here, 51 equally spaced points were used in the axial direction.

1. Subsonic Diffuser

Axisymmetric subsonic diffuser flowfields investigated by Little et al?? are compared with those
computed using the present scheme (designated BL1D)in Figs. 5 and 6. The physical configuration
consisted of several inlet pipe lengths (to give constant inlet boundary-layer thicknesses) and diffus-
er half-angles, although only comparisons for the 12 degree, 21 inch configuration for inlet bound-
ary layer heights of & /R;,,, = 0.0034 (thinner inlet boundary layer) and 5 /R = 0.0190

(thicker inlet boundary layer) are reported here. It is almost embarrassing to report that computa-
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tions resulting from the present interaction method required up to 30,000 time iterations to achieve
convergence. However, it was suspected beforehand that this would be the case using an explicit
numerical scheme for subsonic internal flows. Because the interaction methodology was of primary
interest for the present effort (in particular, obtaining converged solutions which included bound-
ary-layer sepafation), large iteration counts were considered an acceptable compromise between
simplicity and efficiency. No attempt was made to optimize the code which was executed on a Sili-
con Graphics, Inc. Personal IRIS 44/30TG at a rate of 0.0016 cpu-seconds per time step per grid
point. Therefore, a test case with 51 grid points requiring 10,000 time iterations resulted in approxi-

mately 14 minutes of execution time.

Also shown for comparison are computed parameters using a more classical interaction technique
(herein designated as DUCFLO) where the inverse form of the steady integral boundary-layer equa-
tions are iterated with edge velocity obtained from the constant mass—flow constraint. The inverse
boundary-layer method used to obtain these results is that reported by Whitfield, et al23, although
the DUCFLO interaction code (written by Whitfield), and findings generated by this code, have not
been reported elsewhere. It should be noted further that this code can achieve converged solutions
much more quickly than that using BL1D. However, the DUCFLO formulation is valid only for
subsonic, steady flow and for this class of problems is generally the preferred technique with regard

to computational resource requirements.

Thinner Inlet Boundary Layer

Figs. Sa—5e present comparisons between measured and computed distributions of static pressure,
displacement thickness, momentum thickness, shape factor, and skin friction through the diffuser
for the thinner inlet boundary layer case (integral lengths were formed using only kinematic proper-
ties). Fig. 5a compares measured and computed static pressures (normalized by the inlet stagnation
value), where the exit pressure (in BL1D) was adjusted until that at the inlet station matched the mea-
sured value. Except for the region where diffuser diverence begins, computed pressures (from both
BL1D and DUCFLO) are seen to compare favorably with those measured. It should be noted that

the computed inlet pressure using BL1D was somewhat sensitive to the specified exit pressure. That
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is, the exit pressure used to obtain the distribution shown in Fig. 5a was approximately 0.905, giving
in inlet pressure of 0.60. Increasing the exit pressure to approximately 0.92 resulted in an inlet pres-
sure of approximately 0.66. Therefore, cases reported in this section (using BL1D) were obtained

by adjusting the exit pressure to match that at the inlet.

Figs. 5b and 5¢ compare measured and computed “incompressible” displacement and momentum

thickness distributions through the diffuser. It can be seen that both computational techniques over-

predict and underpredict 5 and 8, respectively, although this agreement is considered reasonable.
As a result of this over— and underprediction, computed shape factors are correspondingly high, as
shown in Fig. 5d. It is reported in Ref. 22 that boundary-layer separation was not present in the
experiment and none is predicted by the computations. This is illustrated in Fig. Se which presents
computed skin friction distributions (no measurements were available). However, exit shape factors
in the range shown in Fig. 5d are an indication that considerable retardation in the velocity profile
is present (i.., the boundary layer is close to separation). This is illustrated in Fig. Se which
compares measured and computed (from BL1D) velocity profiles at the diffuser exit, where mea-
sured profiles were obtained at three circumferential positions 120° apart. Although agreement be-
tween measured and computed velocities is not particularly good at this axial location, considerable
scatter exists in the data. Nonetheless, the computed profile is too thin and is also more retarded near
the wall. However, as stated above, both measured and computed profiles are seen to be close to

separation.

Thicker Inlet Boundary Layer

Fig. 6 presents comparisons between distributions of measured and computed (BL1D and DUC-
FLO) diffuser parameters for the thicker inlet boundary—layer case. As stated previously, the exit
pressure was adjusted until the computed inlet pressure approximated the measured value. Similar
to the thinner inlet boundary—layer case, good agreement between measured and computed pressure
distributions is indicated in Fig. 6a, although there is a “kink” in that computed by DUCFLO. This
is apparently due to boundary-layer separation which is predicted by both BL1D and DUCFLO.

It can be seen in Fig. 6b that good agreement between measured and computed displacement thick-
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ness is obtained (except near the diffuser exit), although computed values are again slightly high.
Similar comments can be made regarding measured and computed distributions of momentum
thickness shown in Fig. 6c, although DUCFLO again exhibits a marked “kink” within the separated
region which is not evident in the BL1D computation. As expected, computed shape factors are
again too high corresponding to overpredicted displacement thickness. The extent of boundary-lay-
er separation is shown in Fig. 6e which presents computed skin friction distributions for the thicker
inlet boundary-layer case. The DUCFLO computations indicate a larger separated region than
BL1D in that separation and reattachment occurs farther upstream and downstream, respectively,
than does BL1D (again, no measurements were available). Figure 6f gives comparisons between
measured and computed velocity profiles at the diffuser exit. Again, measurements were obtained
at three circumferential positions around the diffuser exit. The computed velocity profile shows no
reverse flow at this axial location (the computed boundary layer has reattached), whereas at least
one set of these measurements indicate that the flow is separated. However, the agreement between

measured and computed velocity profiles is considered reasonable.

2. Supersonic Channel

Steady and unsteady computations from BL1D for supersonic channel flows are compared to Navi-
er-Stokes calculations in this section. Although supersonic nozzle flow calculations were reported
previously’, the test case reported in Ref. 7 was for steady flow and compared only measured and
computed wall static pressures. Attempts are made here to extend such comparisons to include the

boundary layer, particularly for unsteady flow.

Justification for comparing results ensuing from one computational technique to those of another
comes from Hirsh? in reference to comments made in the Introduction; that is, computations result-
ing from a Navier-Stokes analysis represent a higher level of approximation than those as sociated
with the present methodology. The supposition here is that the technique employing the higher level
of approximation is a better representation of the physics. While comparisons such as these are com-
mon within the technical community, favorable agreement does not necessarily mean that results

from the more approximate method represent reality; it just means that the two computations agree
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with each other. The pitfall here is that while techniques utilizing a higher degree of approximation
(i.e. more complete mathematics), may indeed represent more complete physics, the numerical
method used to solve the resulting equations may be such that these physics are masked or otherwise
lost. Therefore, in keeping with previous comments regarding distinctions between physics, mathe-
matics, and numerics, there can be no doubt that the Navier—Stokes equations are a more complete
mathematical representation of the physics associated with supersonic internal channel flows. How-
ever, we are assuming here that the numerical scheme used to give approximate solutions is yielding
these physics to an acceptable level of accuracy which, of course, results in a better representation

of the physics.

The Navier—Stokes method used to obtain viscous solutions presented herein is that developed by
Whitfield24 and co-workers23-26, The particular version used most closely resembles that reported
in Ref. 26 which has been modified to include explicit evaluation of viscous terms and extension
of the solution algorithm to the so—called “modified two—pass scheme”. This code has as its basis
an Euler solver which is an implicit finite—volume, formulation applying Roe’s?” approximate Rie-
mann solver, and the higher—order extensions of Osher and Chakravarthy?8, to compute the inviscid
flux terms. The implicit operator is formed using Steger’s?? flux vector splitting with the resulting
system of equations inverted by application of Whitfield’s3? two—pass or modified two—pass algo-
rithm. The modified two—pass algorithm was applied in these computations. A brief description
of the numerical scheme is included in the Appendix and the reader is encouraged to seek out the

noted references for more details about the algorithm and the implementation.

Comparison between BL1D and Navier-Stokes computations were made for two test configura-
tions. The geometry analyzed was a transonic nozzle used as an AGARD?3! test case originally de-
signed for evaluation of Navier-Stokes simulation capability relative to shock/boundary-layer in-
teraction. To maintain isentropic, supersonic core flow, the nozzle pressure ratio was maintained

below the second critical design pressure for the present computations.
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Comparisons were made on this geometry for two test cases. The first comparison is made for steady
supersonic flow subject to fixed inlet total pressure and total temperature and prescribed exit static
pressure. The second case is for an unsteady flow and is created by linearly increasing the inlet total
pressure as a function of time, whereas inlet total temperature is held constant and exit static pressure

is again maintained near second critical design pressure. The geometry is shown in Fig. 7a.

It should be pointed out that a problem arises when making comparisons between the Q1D analysis
and the two—dimensional Navier—Stokes analysis. In the Q1D computation all flow—field parame-
ters at a particular instant vary only as a function of axial location. However, each Navier-Stokes
simulation produces a two—dimensional flow—field and determination of equivalent one-dimen-
sional flow parameters for comparison is at best ambiguous. This results from the observation that

determination of the boundary layer edge is not unique for a complex velocity profile.

Steady Case

For Navier-Stokes analysis, the AGARD transonic nozzle3! was modeled using 153 X 30 mesh
points in the axial and vertical directions, respectively. The grid spacing at the viscous wall, Ay/h
is approximately .0002 ( where h is the channel half-height). This corresponds to a y* value of
approximately 4. The Reynolds number based upon reference conditions and channel half-height
is approximately 1.0 X 106. The grid used and the boundary conditions specified in this simulation

is shown in Fig. 7b.

Identical boundary conditions and nozzle area variation were used to preform a corresponding simu-
lation with the BL1D code beginning at axial location x=90mm, where inlet boundary conditions
were taken from the Navier—Stokes simulation. Comparisons of computed distributions of Mach
number, density, momentum thickness, and shape factor are shown in Figs. 8a—8d. Generally, agree-
ment between computed core parameters from the two methods is considered good. However, mo-
mentum thickness and shape factor do not agree as well, where the largest disagreement occurs for
150mm < x < 250mm. Fig. 8¢ shows velocity profiles in the nozzle region which illustrates that

a unique definition of the boundary-layer edge is not possible thus causing the wide variations in
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boundary—layer parameters computed from the Navier—Stokes results. This illustrates how the defi-
nition of quantities such as momentum thickness and shape factor lose their significance in the con-

text of complex velocity profiles such as those shown in Fig. 8e.

Unsteady Case

The AGARD nozzle geometry was modified for use as an unsteady test case. To produce a larger
region within which comparisons could be made, the nozzle geometry was arbitrarily extended (in
the axial direction) 4 nozzle heights as shown in Fig. 9. This geometry was then modeled with a
185 X 30 grid similar to the grid used for the steady test case (Fig. 7b). Boundary conditions were
as shown in Fig. 9. As stated previously, unsteady flow through the nozzle was initiated through
temporal variation of the reservoir total pressure, shown in Fig. 10a. A uniform time step was se-
Jected such that the CFL number in the centerline region was near unity. This produced a maximum
CFL number in the viscous layer in excess of 103. This is expected toadversely affect temporal accu-
racy of the simulation, but was deemed necessary in order to obtain results in a reasonable amount
of CPU time. The impact of high CFLs occurring within large regions of the viscous flow field was

not analyzed.

A portion of the nozzle geometry (shown in Fig. 9) was analyzed with BL1D for comparison pur-
poses. The Navier—Stokes simulation was used to define temporal boundary conditions at the inlet
of the "BL1D nozzle” (Fig. 9); these variations at x = 300 mm are shown in Fig. 10b. Comparisons
between computed distributions of Mach number, density, momentum thickness, and shape factor
at non—dimensional times of approximately 500, 1000, 2000, and 3000 are shown in Figs. 11 through
14, respectively. Atall time levels, agreement between computed inviscid core parameters (a and
b parts of Figs. 11 through 14) is considered very good. However, computed boundary-layer inte-
gral lengths do not agree nearly as well, although the overall qualitative trends of boundary-layer
behavior computed by BL1D are in good agreement with the Navier—Stokes results.

The reader should note the “waves” and “wiggles” in the Navier—Stokes results shown in these fig-

ares. As mentioned above, transforming two-dimensional results ensuing from the Navier-Stokes
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analysis has proved to be somewhat challenging. These difficulties can be traced fundamentally to
one’s definition of the boundary—-layer “edge”; i.e., where the viscous re gion “ends” and the inviscid
core “begins”. Integral lengths computed from the Navier—Stokes solution presented herein were
generated by starting a search at the wall for the first maximum value of velocity (at a particular axial
location and instant in time) which was then defined as the boundary-layer edge. Values of velocity,
density, and Mach number at this y-location were then used to generate the various integrals. How-
ever, significantly different values of edge quantities are obtained using another definition. For ex-
ample, Fig. 15 compares computed momentum thickness distributions from the Navier—-Stokes re-
sults at the 1000 time—level (this corresponds to Fig. 12d) using two different edge condition
definitions. For the second definition, the search discussed above was again performed to locate the
first gy in a particular profile. This value of velocity was then multiplied by 0.99 and another
search conducted, again starting from the wall. The first index where the velocity exceeded the
0.99uz, value was then defined as the edge. This results in considerably different values of various

edge quantities, the result of which is illustrated in Fig. 13.

Therefore, although differences exist between computed unsteady core and boundary-layer quanti-
ties resulting from Navier-Stokes and BL1D analyses, it appears that the Q1D approach is valid for
this type configuration, at least for the conditions investigated. Again, however, additional efforts
are warranted to investigate more consistent methods to interpret two—dimensional physics from a

one-dimensional perspective.
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ll. PART 2— TRANSONIC FLOWS
All previous discussion has been concerned with taking the system of equations (Eqs. (1) - (5)) and
algebraically manipulating various terms in order to recast the original system in a form amenable
for solution using relatively simple explicit numerical schemes. Although this approach has been
shown to be capable of quickly yielding solutions of reasonable accuracy (at least for the cases pres-
ented herein), the scheme possesses several distinct disadvantages. For example, many attempts to
compute solutions containing near—discontinuous behavior of the dependent variables (i.e., shocks)
with the explicit method have been unsuccessful, regardless of the type artificial dissipation model
used (including that used in the following implicit scheme—see Section I1I. ¢). Because the ability
to capture flows of this type is vital to any flow model which must operate in the transonic regime,

it was evident that another approach must be pursued.

Although not reported here, other explicit schemes have also been implemented, but again were not
capable of capturing solutions with steep gradients. Therefore, the decision was made to implement
an implicit scheme because of the inherent gains in stability bounds over those typically associated
with explicit methods. It should be noted that this decision was originally prompted by the issue
of numerical stability. It is recognized that if difficulties exist in obtaining numerical solutions for
an ill-posed initial/boundary-value problem, it is probable that one’s choice of numerical scheme
is not relevant. As stated previously, the present system of equations exhibit complex eigenvalues
in flow regimes where shape factors (H) are high enough to induce boundary-layer separation.
However, the magnitudes of the imaginary part of these complex eigenvalues are observed to be very
small (one or two orders of magnitude less than the real part). One could interpret this as meaning
that the eigenvalue is “almost real” thus making the system “almost well-posed”. Nonetheless, as
stated above, obtaining solutions using any scheme (especially those which are explicit) remains dif-
ficult and therefore we cannot discard the possibility that the system is fundamentally ill-posed in

certain flow regimes. Obviously, additional study is needed in this area.

The algebraic complexities of the present system of equations limit the number of implicit schemes

which can be used. For example, implicit schemes of Briley and McDonald3? or Beam and Warm-
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ing33 can not be easily applied to this system because it cannot be written in fully conservative form.
However, using a Newton—based implicit solver circumvents this limitation by discretizing the sys-
tem in both time and space and then iterates the resulting system to convergence. The following

discussion describes the Newton formulation as well as other issues resulting from its use.

a. Formulation of the Newton Scheme
Following the analysis presented by Whitfield39, a classical implementation of Newton’s method

for finding roots to a nonlinear scalar function f(x) = 0 can be written as

f'a™ @™t =™ = — (™) (46a)

where m is an iteration parameter and

;=4 (460)

Now consider a system of nonlinear equations (each a function of several variables) written in very

general form as%?

Fl(xl,xZ, ...,x,,) =0

F2(X1,X2, ...,x,,) =0
47)

Fn(xy,Xp, s Xn) = 0
If we consider F to be a vector function comprised of Fy, F2, ..., Fn, and x to be a vector function

comprised of X7, X2, ..., ¥,. then the above system of equations can be written simply as

Fix) =0 (48)
Newton’s method for such a vector F(x) can be written analogous to that for a scalar equation and

solved as

X"+l = - [F @™ FG™) (49)

In the above equation, F '(x) is the Jacobian matrix of the vector F(x) given by

28



—au(x) app(x) - azn(x)T
F () = az.z(x) 022.(x) azn.(x) (50)
La'”(x) an2(x) ... Gpn(x)

where the elements of the Jacobian matrix are given by

BF,-(x)

3%, SH

aé"(X) =
That is, the (i) element of the Jacobian is given by the change in the ith element of the vector func-
tion F(x) for a given change in the jth dependent variable. Because it is usually impractical to obtain

the matrix inverse as the iteration proceeds, Newton’s method is usually implemented as0

F '™t —x™ = — F™) (52)
Now consider the vector function F(x) to instead be F(q), where the function F(q) is given by Egs.

(1) — (5). For example, the first element of F(q) is given by

- « U ¢
F = Lloud") — ueg @) + #5‘3;(9#31?"9) +oud S — ouit5 =0 (53

In implementing the implicit scheme, the formulation involving pressure (p,) as a dependent vari-

able was used. Thus, the dependent variable vector is given by

q = (Qc Ue Pe O F)T (54)
The remaining elements of F(q) are defined by referring to Eqgs. (2) — (5). The approach is to now

discretize these functions using first-order backward temporal differences (implicit Euler) and se-
cond—order central spatial differences, where the spatial differences are written at the (implicit) n+1

time level. This results in
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R/, Xiv1 ~ Xi-1 Xiv1 ~ Xi-1
n+1l
- (eeu%%’f) =0 (55)
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Fy= = At L+ (ZQeue(ag - 6u))l.
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At R/, Xip1 — Xi-1
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+ (2002@" = 00, +[ T ] (2eeue s ) =0 (56)
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FB - At Xiv1 — Xi-1 =0 (57)

n+1 n+l
_ uuey ! [(@ai + poaLl,, — [(@a + poA]:-,

4~ At Xiv1 ~ Xi-1
(A)"'*'l - (A)n+l
- (pe)?“{ ‘;11 T ] =0 (58)
(EAN*! = (EA)? n+1[(f‘>?“ - (A);*]
3 At e/ At

[ue(Ee + pJAInFL — [ueEe + p)ALY]
=—¥— =0 (59)

Xis1

Of course, we assume that variables at time level n are known and we seek to solve for those at ime
level n+1. Therefore, within the framework of a Newton iteration, variables at the n time level are
constant. However, each function F(g) above depends upon values of the dependent variable vector

at spatial grid points i, i+1, i-1, all at the n+1 time level. Thus, we can write
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F(g"*Y) = F(@**L, 'Y aith (60)

A Taylor’s series expansion of F ( q"*1) in three variables results in the expression

F(@' il + AQit, @@+ AqrY, qif + 4q))

m m
= F@;F ™ ai i+ (a;ril) Aqir " + ( s ) Agqpir
m

i+1 aqp*!
oF +im
+ (aqn+1) Aq:‘_l'”‘ =0 (61)
i—1
or
m m m
oF +1 oF +1 oF +1
(aq?j-ll) Aq?+lm + (Bq;”'l) Aq? ”+ (aq?:-ll) Aq?—lm
= — F(@* gt gt (62)
where
Aqn+l.m = qn+1,m+1 _ qn+1,m (63)

Of course, the objective here is to perform sufficient iterations within a given time step such that

Ag" T =0 (64a)

which gives

gl = gt = P (64b)
Eq. (62) is the Newton scheme used herein. It should perhaps be referred toas a discretized—Newton
scheme because it is the discretized form of the equations to which the method is applied. The equa-
tion is written at each interior mesh point which results in a system of block tridiagonal equations,
where each block is a 5x5 matrix. A block tridiagonal solver written by Whitfield!® is used to solve

the system of equations.

One should note that forming central differences on a non—uniform grid without the benefit of a cur-
vilinear coordinate transformation has altered the formal second—order accuracy of the spatial
discretization. This can be illustrated by considering a continuous function f(x) defined at discrete

points x; and forming Taylor expansions for f(x;+7) and fx;i_1) about f(x;), or
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Subtracting the latter from the former results in
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4 0[(xi+1 -x )Y - xi—1)3]

Xip1 — Xi-1 7 Kiw1 T K-

For uniform spacing, the second term on the right-hand-side of the above vanishes and the usual
central difference expression results. However, as evidenced by Egs. (55) —(59), the present scheme
simply uses the first term on the right-hand-side of the above and consequently incurs additional
discretization error resulting from the non—uniform grid spacing. Fortunately, this additional “non—
uniform spacing error” is typically smallest in regions where grid spacing is smallest, and larger else-
where (at least using the stretching function discussed in Section I11.d). Thererfore, the overall addi-
tional error will be counter—acted by the second derivative term which will be small if grid points
having the largest spacing have been placed in regions where the function is not changing rapidly;
ie., affdx = 0.

As mentioned above, only the interior points are updated using the Newton iteration. Boundary
points are updated in an explicit manner at the conclusion of each complete time step in a manner
appropriate with conditions at the boundary (i.e., subsonic inflow, supersonic outflow, etc.), as dis-

cussed in Section IIL.d.

The overall block structure is due to the appearance of the Jacobian matrices. Because of the algebra-
ic complexity of the vector function F(q), the Jacobians are evaluated numerically. This procedure

is discussed in the following section.
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b. Computation of the Jacobian Matrices

Consider the following evaluation of a Jacobian using the dependent variable vector at the ith mesh

point:
(QE) _ IF \ FoF3FaFs)T 65)
aq), dq 1,‘12_‘13,44,‘15)?
where
(qls 42, 613, 44, (15)T = (Qb Ue, Pe, 9: H)T (66)

Therefore, we can write the (rs)™ element of the Jacobian at the ith grid point (at the m™ iterate) as

si+1 si+1 si—1
n+1 - n+l — £
aqi aqs,i

m
( aF ) _ aF, _Fr(q"+1"",‘1::-1""+3,q::'_li”') - F,(q"“"",q;“;“l'”‘,q"“’")
rs

(67)
The above relation states that at the it axial location, the (rs)® element is computed by evaluating
the change in the rih component of F(q) due to a given change in the sth component of g, holding

gs.i+1> gs,i-1 at their current mtt—iterate values.

The value of € used to compute the Jacobians as described above was approximately one-half of the
reliable digits associated with the machine on which the code is executed, as suggested by Whit-
field34. All solutions using the discretized—Newton scheme presented in this section were obtained
on a Silicon Graphics, Inc. 4d/460 Power IRIS using double—precision floating—point operations.

Therefore, for the present effort, ¢ = 10 -$,

As might be anticipated, computation of the Jacobian matrices is rather expensive from an operation
count point—of-view, particularly when considering that they appear within the Newton iteration;
i.e., they should be recomputed at each m—iterate. However, it has been observed that convergence
is not degraded significantly if the J acobian updates occur infrequently. In fact, solutions presented
here were obtained by updating the Jacobians about every five time—steps, where a time—step may
include several m—iterations. This method of Jacobian updating drastically reduces the overall com-

putational resource requirements. Note that this approximation only affects the convergence (i.e.,

to make Aq™* lm = () at a particular time step and has no effect upon the time accuracy of the
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scheme. This is because the right-hand-side of Eq. (62) is only affected by the discretization error
associated with the temporal and spatial difference operators used in the original discretization pro-

cess (in this case, first—order in time and second—order in space).

c¢. Dissipation Model

As stated above, second—order central differences were used for spatial discretization. As such, in-
sufficient numerical damping is present which results in significant under— and overshoots in re-
gions where the dependent variables exhibit near—discontinuous behavior (e.g., shocks). Therefore,

additional artificial dissipation was needed to suppress these unwanted oscillations.

Although several dissipation models have been tried (e.g., that used by Warming and Beam?29), the
model proposed by Davis33 has been the only one which yields the desired results. Thisisa“TVD-
based” (total variation diminishing) model which determines the level of added dissipation using
local flowfield conditions. The development of this model was motivated by the need to improve
shock capturing capabilities of explicit schemes while preserving the simplicity of these methods.
Much improved solutions were reported by Davis33 in solving the two—dimensional Euler equations,
and also by Causon36 who used the model in three-dimensional inviscid flows, where the MacCor-

mack scheme was used in both studies®>+S.

For the present discretized—Newton scheme, the additional dissipation was added to the dependent
variable vector at the end of each Newton iteration (i.e., after each m—iterate). Although adding the
dissipation at various other stages was tried, it was determined that adding it after each Newton itera-
tion was the most robust and gave the overall best results. The model as implemented herein is given

by the following step—by-step procedure:

[Q? *lm 1].frmoothed = [q:l Tlms 1]ur1.<>‘rnoothed + 6q2liss (68)

where
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#(r) = min[mod(2r,1)] = max(0, min(2r, 1))

where ( a, b) is a scalar product of a and b, and A is the maximum local eigenvalue.

d. Results
This section presents comparisons between measured3! and computed results for steady, transonic
converging—diverging planar channel flow for both symmetric and asymmetric configurations. In
addition to results obtained by the present discretized—Newton scheme (hereafter desi gnated
BL1D-I), calculations ensuing from both Navier—Stokes (the same code previously discussed) and
a Q1D Euler solver3” are compared with the measurements. Solutions obtained with the discre-
tized—Newton scheme were obtained using a Silicon Graphics, Inc. 4d/460 Power IRIS. Again, few
attempts have been made to optimize the code for fast execution which proceeds at a rate of 0.018
cpu-sec per grid—point per time—step. Calculations from BL1D-I were obtained from an impulsive
start by initializing the dependent variables to specified values and then marching in time to a steady-

state.

With regard to the comparisons which follow, the reader should note that:
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1. x =0 refers to the beginning of the convergent section.

2. All lengths have been non—dimensionalized with A, where h, = 0.1 meter
for Case 1.2 and h, = 0.096 meter for Case 1.3.

3. Static pressures are plotted as a ratio of local static to reference stagnation
pressure (where Py o, = 96 kPA).

4. Velocities are non—dimensionalized by the quantity 4emax, where
Uemax=418 meters/second for Case 1.2 and Uemax=403 meters/second for
Case 1.3.

Case 1.2 (Symmetric)

A schematic of the experimental apparatus (which is symmetric) is shown in Fig. 16a. In attempting
to computationally simulate the flowfield within a given physical configuration, it is important that
all pertinent information about the experiment be given. Unfortunately, a complete description of
the test apparatus was not provided in Ref. 31. In particular, the length of the section between the
reservoir and the beginning of the converging section, as well as the distance between the diverging
section and second throat, were not specified. Therefore, certain lengths had to be estimated where

both estimated and actual values are shown in Fig. 16a. Inlet stagnation pressure and temperature

were specified as p“Q »=96kPA and f‘o,w =300 K, respectively. These conditions resulted in arefer-

ence unit Reynolds number of 5.345 x 103 per meter. Also, the reference length was defined to be

A

R, =50 mm.

For the present computations, 51 axial points were used where the points were clustered in the re gion

of the shock. The clustering was accomplished using a hyperbolic tangent stretching function given

by
;o tanh[0(§ — 1)]
x =1+ @)
where
_ x=1
&= Nmax — 1

Here & is a scale factor that controls spacing and Nmax is the number of axial grid points. Use of
such a stretching function allows a significant reduction in the number of grid points while maintain-

ing good resolution in regions of high gradients.
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Comparisons between measured and computed wall static pressure distributions are shown in Fig.
16b. Symbols represent measured values whereas the solid line shows the computed distribution
from the B11D-I code. Also shown for comparison is the computed pressure distribution using the
inviscid method of Ref. 37. Both measurements and calculations indicate the presence of a shock
of moderate strength. Similar to the subsonic calculations discussed in Section II, the exit static pres-
sure in the computations was adjusted in order to match the measurements at some other axial loca-
tion. In this case, the exit pressure was set such that the computed shock location was very near that
indicated by the experimental data. Although both computational techniques show a reluctance to
expand as quickly as do the measurements upstream of the shock, the inviscid calculations show a
much higher rate of compression through and downstream of the shock than do those computed by
the BL1D-I code. This “relaxing” effect is due to the presence of the boundary layer which, of

course, the purely inviscid method cannot simulate.

Shown in Fig. 16¢ is the computed skin friction distribution for this case. Whereas no experimental-
ly determined values are available for comparison, Navier—Stokes results are shown and are seen
to qualitatively agree with those computed by BL1D-I, although the separation points and the re-
gions over which separation occurs are considerably different. Note that the computed distributions

of ¢,from both computational techniques are not smooth. In BL1D-I, this is due to similar behavior

of the calculated “incompressible” shape factor H, which is shown in Fig. 16d along with the mea-
sured distribution of this parameter. Although the computed distribution of H appears fairly smooth
in Fig. 16d, a scaled—up plot shows significant “wiggles” existupstream of the shock (many attempts
to eliminate such oscillations have thus far been unsuccessful). The regions of experimentally and
computationally determined reverse flow are shown in Fig. 16d as the shaded and open areas, respec-
tively. Furtherillustrations of this reverse flow are given in Fig. 16e which show measured and com-
puted boundary-layer velocity profiles upstream and within the separated region, as well as at reat-
tachment. Also shown for comparison are Navier—Stokes calculations for the same configuration.
While the Navier—Stokes results show a clear superiority over those computed by BL1D-I, the latter

technique is seen to capture the overall trends inferred by the measurements.

37



Finally, Fig. 16f presents a comparison of measured and computed displacement surfaces within the
perspective of the experimental test section. It should be noted that the vertical and horizontal scales
of this figure are different which gives a distorted view of the minimum area region. It can be seen
that computed results indicate a displacement surface considerably larger than that measured, al-
though the overall qualitative trends associated with rapid boundary—layer growth downstream of
the shock are reasonable. One should note that the computed displacement thickness within the sep-
arated region grows to approximately 40% of the local channel half-height which implies that the
viscous region occupies most of the channel (i.e., that the flow is fully developed). However, as
shown by the velocity profiles in Fig. 16e, the rapid increase in displacement thickness can be attrib-
uted to the fact that the velocity ratio u/u is highly retarded over a significant distance from the wall,
thus increasing the quantity /—u/u, used in computing the displacement thickness. Therefore, the
flow should not be considered fully developed and that an inviscid core does exist (which can be

verified from the velocity profiles shown in Fig. 16e).

Case 1.3 (Asymmetric)

The physical configuration for this case is similar to that given above except that the channel is now
non-symmetric. Again, acomplete description of the test apparatus was not provided, thus making
it necessary to estimate the distance from the upstream reservoir to test section entrance. The exper-
imental apparatus is presented in Fig. 17a which shows an airfoil-like blockage, but is on the lower
wall only. Also shown in this figure is the computational domain used for the present calculations.
In reality, this is a two—dimensional configuration which, of course, cannot be completely simulated
using the Q1D approximation. However, because a large portion of internal flow configurations
possess some asymmetries, it is of interest to compare results from non—symmetric measurements
with those generated using the Q1D apiaroximation in order to provide some measure of the validity

with regard to using the Q1D approach, particularly for transonic flow.

Shown in Fig. 17b are the actual and equivalent nozzle contours. The equivalent contour was gener-

ated by using the actual area and deducing from this the required channel half-height distribution.
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It can be seen that the effect of this “transformation” has been to lessen the wall slopes over the entire

airfoil region, particularly at the aft end where the airfoil and tunnel wall coincide.

Tllustrated in Fig. 17c are comparisons between measured and computed static pressures where the
experimental data shown were obtained on the lower wall (refer toFig. 17a) whereas those computed
result from use of the equivalent channel as discussed above (Navier-Stokes results were not avail-
able for this case). Also shown for comparison are wall pressures computed using the inviscid equa-
tions37. Similar to the symmetric case, both computational schemes produce reasonable results up-
stream of the shock, and again the inviscid computations indicate a more rapid compression
downstream of the shock than do those associated with the present interaction scheme. Computed
pressures from the present scheme again exhibit “wiggles”, but the oscillations seem to diminish
axially downstream. It is important to note that the exit pressure for both inviscid and interaction
calculations were adjusted such that the computed shock location approximated that observed on
the lower wall. For both calculations, the use of an equivalent area distribution has the effect of un-
der-expanding the flow in the region upstream of the shock. This is not surprising because the mea-

sured flowfield “sees” a larger disturbance on the lower wall than that within the equivalent channel.

Two—dimensional effects are shown in Fig. 17d which illustrates measured and computed pressures
for both upper and lower walls. It can be seen that significant differences exist between measured
upper and lower wall pressures and that the present calculations tend to representan average of those
measured, except with regard to shock location. This figure further amplifies the previous observa-
tion that the equivalent channel (Q1D) approximation has the effect of causing a weaker shock (at

approximately the same axial location as that observed on the lower wall).

Similar to Case 1.2, a large region of separated flow was measured which is also predicted by the
computations. Figure 17e shows computed skin friction which illustrates the region over which
boundary—layer separation occurs in the calculations. The severity of the measured separation re-
gion is further illustrated in Fig. 17f which presents measured and computed shape factor (H) dis-

wributions. It can be seen that the calculated values of this parameter fall short of those measured
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within the separated region. The reason for this underprediction is shown in Fig. 17g which illus-
trates measured and computed velocity profiles as selected locations in the vicinity of the separated
region. It can be seen that reverse flow regions associated with computed profiles are not as severe
as those measured, thus accounting for the large shape factor. In addition, a correspondingly large
displacement surface compared to the complications is shown in Fig. 17h. Whereas the computed
displacement surface downstream of the shock is less than that measured, the calculations are con-
sidered reasonable. This is particularly true when one considers the level of approximation used in
the computational method. Similar to Case 1.2, this case does not appear to be fully developed thus

allowing the present interaction method to be applicable, at least for these flow conditions.
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IV. SUMMARY AND CONCLUSIONS

Viscous—inviscid interacting internal flowfields have been computed for subsonic, transonic, and
SuUpersonic quasi—one-dimensional (Q1D) configurations. Viscous—inviscid interaction was
achieved by directly coupling the unsteady Q1D Euler equations with inte gral boundary-layerequa-
tions for unsteady, two—dimensional, turbulent flow over impermeable, adiabatic walls. The cou-
pling methodology differs from that used in the past in that the coupling is carried out directly
through the equations as opposed to solutions of the different equation sets. Numerical solutions
to the coupled system of equations were obtained using the explicit MacCormack scheme as well
as an implicit discretized-Newton scheme. Computed solutions have been compared with measure-
ments as well as Navier-Stokes and inverse boundary-layer methods. Although differences exist
between measurements and solutions computed from the Q1D approach, and also between those
computed by other methods, overall qualitative trends for both steady and unsteady test cases are

predicted with reasonable reliability.

An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the
coupled system of equations used in the Q1D approach indicates the presence of complex eigenva-
lues for certain flow conditions (in particular, values of shape factor, H, highenoughtocause bound-
ary-layer separation) thus allowing exponential growth in the solution(s). Although reasonable
solutions are obtained numerically, it is believed these complex eigenvalues contribute to the overall
difficulty observed in obtaining numerical solutions to the coupled system of equations. It is further
postulated that these complex eigenvalues are a result of empirical and analytical approximations

used in the integral boundary-layer technique.

The original formulation of the system of equations7 (for use in the explicit scheme) made the as-
sumption that stagnation temperature was constant from the upstream Teservoir reference state to
that associated with local conditions. However, this assumption was shown to be inconsistent within
the context of unsteady flow, even for the case of no heat transfer. Asa result, new formulations
of the equations were derived which do not depend upon an assumption of constant stagnation tem-

perature. It was shown that the degree of error associated with the original formulation was small,
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at least for the case considered. However, this error will increase in direct proportion with the degree

of unsteadiness associated with a particular flowfield.

Comparisons between computations using the Q1D approach and those resulting from a Navier—
Stokes analysis show generally good agreement with regard to the overall qualitative aspects of the
flowfield. Some of the observed discrepancies can be attributed to improper interpretation of the
two—dimensional Navier—Stokes results from the perspective of quasi—one—-dimensional physics.
In particular, locating the boundary-layeredgeina Navier—Stokes generated velocity profile proved
to be the “Achilles heal” of the comparison process. Nevertheless, results generated from the Q1D
approach for both steady and unsteady supersonic channel flows are considered good enough to pro-
vide preliminary estimates of internal flowfield behavior, at least for configurations of the type con-

sidered herein.

Implementation of an implicit discretized—Newton scheme for numerically solving the coupled sys-
tem of equations was originally motivated from the standpoint of numerical stability. This was
deemed necessary for the method to be capable of addressing transonic flow; i.e., flows with shocks.
However, as stated above, appearance of complex eigenvalues for the coupled system gives rise to
possible exponential solution growth due to the equations being ill-posed for solution in time as an
initial/boundary—value problem, at leastin certain flow regimes. In spite of this, reasonable steady—
state solutions have been obtained, even for highly separated flows (i.e., for very high values of H).
It is concluded that even though the equations appear to be ill-posed in these regions, growth of error

is slow enough to allow reasonable solutions.

It is acknowledged that “there’s nothing more dangerous than answers that look about right,” and
that more study is warranted with regard to both unsteady and multi-dimensional flow, simulation
using the Q1D approach. However, it is felt that the Q1D approach is valid and the tools generated
by this effort are useful in the regimes which have been investigated, particularly when considering
the computational resources required to generate results from other methods. Forexample, the Nav-

jer—Stokes code used in these studies executes at approximately 6.0 x 10~ cpu—sec per time-step
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per grid point on a CRAY Y—MP. Therefore, for 3,000 time steps and the grid used (185 x 30x 2),
this resulted in approximately 30 cpu minutes on this machine. As stated earlier, all Q1D-based
codes were executed on engineering workstation-based hardware and required much less computa-
tional time to execute. As stated in the Introduction, whether or not the Q1D approach is appropriate
is greatly problem dependent, as evidenced from the steady—state nozzle results which was inherent-
ly two—dimensional within the nozzle contraction/expansion region. If preliminary, engineering ac-
curacy results will suffice, results shown herein indicate that this can be achieved using this ap-

proach.
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Figure 3. Computed Unsteady Flow Parameters (All Formulations)
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Figure 4. (Continued)
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Figure 4. (Continued)
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Figure 4. (Continued)
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Figure 4. (Continued)
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eigenvalues

Figure 4. (Continued)
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Figure 5. Measu
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Figure 5. (Continued)
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Figure 5. (Continued)
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Figure 6. Measured and Computed S ubsonic Diffuser Parameters
(Thicker Inlet Boundary Layer)

(a). Wall Static Pressure

Pe /po,oo

* (in.)

, 1

*; ]

04 r O measured (Little, et.al.) ‘{

i ——— computed (BL1D) :

03 | - -~ computed (DUCFLO) ]

0.2 j

01 ]

| |

0.0 ——— :  ma s - : 1 e L L
-5 0 5 10 IS 20 25 30 35 40 45 50
x (in.)
(b). Incompressible Displacement Thickness

4,0 r_'—’_'_q-T_'_‘_’_qv""— T T T T T T T T }
i 4

‘: j
351 o ]
305 5 measured (Little, et.al.) ]
. —— computed (BLI1D;) L T

25 - - - -~ computed (DUCFLO) ) o )
| |

20 N .
S - }

15 ey ]
1.0 -
2 i

0.5 + :
t T !
—r 1
0.0 ° R : : ' ; - : : '
-5 0 5 10 15 20 25 30 35 40 45 50

x (in.)

62



B (in.)

Figure 6. (Continued)

(c). Incompressible Momentum Thickness
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Figure 6. ( Continued)

(e). Skin Friction
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Figure 7. AGARD Geometry
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Figure 8. ( Continued)

(c). Momentumn Thickness
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Figure 8. (Continued)

(e). Velocity Profiles in Nozzle Region
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Figure 9. Computational Grid and Boundary Conditions for
Modified AGARD Geomelry (Navier-Stokes—Unsteady)
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Figure 11. Navier-Stokes and BL1D Channel Parameters att = 500
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Figure 11. (i Continued)
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Figure 12. Navier-Stokes and BL1D Channel Parameters at t = 1000
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Figure 12. (Continued)

(c). Momentum Thickness
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Figure 13. Navier-Stokes and BL1D Channel Parameters at t = 2000

(a). Mach Number
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Figure 13. (Continued)

(c). Momentum Thickness
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Figure 14. Navier-Stokes and BL1D Channel Parameters at t = 3000
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Figure 14. (Continued)

(c). Momentum Thickness
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Figure 15. Momentum Thickness Distributions at = 1000
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Figure 16. AGARD Test Case 1.2

(a). Experimental Test Configuration
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Figure 16. (Continued)

(c). Computed Skin Friction
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Figure 16. (Continued)
(e). Measured and Computed Velocity Profiles at Various Axial
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Figure 16. (Continued)
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Figure 17. AGARD Test Case 1.3

(a.) Experimental Test Configuration
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Figure 17. (Continued)

(c). Measured and Computed Wall Pressures (Measurements from Lower Wall Only)
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Figure 17. (Continued)

(e). Computed Skin Friction
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Figure 17. (Continued)

(2). Measured and Computed Velocity Profiles at Various Axial Locations
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Figure 17. (Continued)

(h). Measured and Computed Displacement Surfaces
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APPENDIX
I. Elements of the L and N Matrices

Recall that the system of equations can be written as

19 _ (A.L1)
at
or, in quasi-linear form,
99 99 _ (AL2)
Lat + Nax = d

Elements of the L and N matrices are given below for all formulations and were obtained using the
auxiliary relations reported elsewhere in this Appendix. Each particular element is referred to by
either lower case ¢ (for L) or n (for N) using double subscripts (ij), where i and j represent the specific

matrix row and column, respectively.

Listed first are the L and N matrix elements resulting from the dependent variable vector given by
q = (0 ue M. 6 H)T
Although the ratio T, = 'Ih'o,e/f'o_m appears in several terms, all computations using this formula-

tion have been made using the assumption Tp .= I. It should be further noted that additional terms

involving derivatives of this quantity were neglected in the original formulation, ie.,

aTO_e B BTO’e 0
at  ox
L Matrix Using M. as Dependent Variable (To,e assumed constant)
l, = QeeHé-

I3 = 20eueMB (csH + co)
ly = oete(Hy — Hp)

lis = oeud(l + CSM%)

Iy = 6u(1 + Hy — Hg)

*

0y
122 = 2Qeu¢6(1 + Hé‘ - _6—)

20UM H(csH + cg)
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lyy = oeus(l + Hs — Hy)
ls = 0au20(1 + csM?)

I3 = A
lyy =0
134 = QBWHé‘
Lis = — o8W(l + c\M?)
lg = ueA
ly = 0
143 = - ZQeueMe@W (Clﬁ + C2)
lyg = — QelheWH s
lis = — oaAW(l + c ;M)
I, = A(éeTo_e + %uﬁ)
Is; = oeteA
_ AoM,T
lyy = — 2Ee + p)wOM, (,H + c)) — —Q—WQL‘E
4
154 = = (Ee + Pe)WHa'
lss = — (Ee + po)d (1 + ¢, M?)

N Matrix Using M. as Dependent Variable (To . assumed constant )

n“ = 0“3

ny = 0ubH . + 2)
n3 =0

Ry = qug

nis =0

ny, = OulH,

oH,;
= 3 8
"3 T Qe

nys = QczHy

90



nas
niy

n32
N33
N34
n3s
ngy
n42
43
Na4
Nas
nsi
ns2
ns3
Ns4

nss

9H

39 —%
Oclie 3H

uA

0A

— 20uMHbw(c H + c;)
— QeleWH 5.

— QU bW + ¢\ M2)
Ally = DéT,, + u?l
20ueA

— 20u20M (c H + ¢3) — ?—;—lAQf;MeTO‘e

- QeuEWH 5 :

— pu20w(l + c;M2)

ueA(yéeTO,e + %u%)

A(E. + pe + 0ét)

— AE, + pudOM(c,H + ¢) — Q%Mﬁro,e
:

- (Ee + pe)ueWHao
— (E, + pous®(l + c,M?2)

Also, the following definitions have been used:

€1
)
€3
Ca

Cs

0.113
0.290
0.185
0.150
cy — C3
C2— C4
w(@® -8
2, planar

%(R — 8%, axisymmetric
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w, planar

g
It

2w, axisymmetric

TO,e - uz = Te
vy — Dfe yly—1DMZ vy - D

_ T
Ee = Qe(eeT""-’ - %“3) - Q”(Y(y 5 %“g)

Ce = éeTO,e =

T
De = Q;, <
Ec+pe = Qe(}’ee + %u%)
-1

Listed next are the L and N matrix elements using Mach number as a dependent variable, where no
assumption regarding T, , = constant is made. For convenience, most elements are written in terms
of those given previously. Matrix elements given below are written with superscript M to indicate
that Mach number is used as the dependent variable and that stagnation temperature is not assumed

constant.

L Matrix Elements Using Mach Number as Dependent Variable
(To not assumed constant)

=1
=l
1= 1ls
=l
1[1“5 = ls
19 = I
1%42 =y
1= 1Ip
l% = Iy
15 = lps
l% = Iy
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i =lxn

15 = Iz

1 = Iy

e = b

’{4”1 =y

19142 =y

l% =y

15144 = Iy

lﬁls = lgs

Ig’l = AkMu%
1Y = 2AkpQeue
= - ;(_}-’-2% — 2E, + pdWM(c,H + ¢3)
15 = Isq

1% = Iss

N Matrix Elements Using Mach Number as Dependent Variable
(Tg,e not assumed constant)

”11"1 =nn
"1{42 =N
”% = M3
”1{44 = N4
il = ns
= 21
"342 =np
niy = ny
"% = Ny
"3"5 = n2s



M
n3y = n3;
M _

N3y = N3y

M _

N33 = Na3

M _

N3y = N3y

M _

n3s = nNas )

Au

M 2 e
nt o= Au; + —=
41 © o yM:

nﬁlz = 20.uA +

o2 yM?

Qe —

nt = - yM?,e — 20uZWOM (¢ \H + c))
ngy = nas

M _

ngs = Nas

M _ Ky

ngg = A(E, + pe + 2Qeu£EM)
M= = 240,43
B - DM
Nsg = Nsy

M _

nss = nss

Note the following relations have been used:

_ 1
vy — 1)M?
1
(y — 1)M?

k

-+

B —

M

|

+

N |—

" =10 -9+

Finally, the L and N matrix elements resulting from the dependent variable vector given by

= T
q=1(0c ue pe 0 H)
are listed. As previously discussed, no assumptions of constant stagnation temperature are required.
Matrix elements listed below are written with superscript p to signify that pressure was used as a

dependent variable. Again for convenience, most elements are written in terms of those previously

listed.
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L Matrix Elements Using Pressure as Dependent Variable (Toe

P
111

P
112

P
113

P
114

4
115

4
121
P
P
P

P

4
131

4
132

P
133

v =

34

P

P
l41

P
e

P

P o=

45

2=

2% =

25

5

2

1, M
2113 Oe
M
=l + g
_1, M.
2°13 D,

=lll+

=y +35

= Iy +

1
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po=la2 M wo(c,H
51 2 Ue Qe( e+Pe) (C1 +C2)

M? —
12, = oeeA — 27 (Ee + poyWd(c,H + ¢;)

A M? —
l§3 = ;’—-_—1' + "p_:'(Ee + pe)W(CIH + ¢,)
By = lsa
s = lss

N Matrix Elements Using Pressure as Dependent Variable (Tg ¢ not assumed constant)

niy =M
=
i3 = M
o=
s = nis

1
ngl = ’lzl + 72"7!23‘9—:

M.
nb, = np +t npg,

nhy =~ %"23%%

M = P

"25 = Nos

n = ny + %”33%%

n‘3’2 = nqy + n33%

nh, = %’133%

iy = M

s = s

n? = Auf — ugMz6w(c,H + ¢))
Wy = 20eeh — 20auMipwc H + ¢))
w. = A+ 2 Mlowic H + ¢
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ni4 = n44
nhs = Nas
WP = LAud — 2EMUE, + powo(cH + ¢3)
51 2°%e Q. e € 1 2
n§2 = A(Qeug +E,+pJ— ZME(Ee + pe)WG(CIH + ¢9)
Y u 7
", = ;—_—TAue + p=MAE. + poO(c,H + )
nGy = nsa
s = s

IL. Auxiliary Relations
Hy = (1 +c,MHH + c,M?
Hoo = (C3H+ C4)M%

_ -2 N 1 -1 107—H— 1
(Hy)y.—o = 1.48061 + 3.83781e™ + 0.33 — grgggztan [ 33 ]

- ___ : —6vp 17— Hy1.45761
(0.33 l7.1)tanh1(1.2874x 106107 ) ]

(Hp)y, =0 + 0.028M7
o 1 + 0.014M?

z, = 0.377 L 1x107H|t h(4———H———) ~1
f = (longTeB)l-“*O-“H S X an 0.875

__0.92M;
7.09 + M?

tanh[1 . 49(H — 0.9)]

DD

D [~ 0.01167¢ 007 + 00115 + ACFD 4 (9.0 x 10-%)ets0T |
2 (1 + 0.025ML%)

Note that in the above relation,

ACFD = mRej
m = 650H — 743 H=1.6
n=—1.59H+1.45
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ACED = me"Ke

m =3, 2560057 O>1.6
__H _
" = 10000 0.0017
where
R—e{,_cf e

IIL. Details of Navier-Stokes Computational Procedure

The Navier—Stokes simulations of the AGARD transonic nozzle geometry were made by application
of the Euler solver developed by Whitfield?* and Arabshahi26 modified to include viscous effects.
Although this code was developed as a full Navier—-Stokes code, streamwise viscous terms were ne-

glected in these two—dimensional simulations.

The basic Euler solver is an implicit, finite—volume, formulation applying Roe’s?? approximate Rie-
mann solver, and the higher—order extensions of Osher and Chakravarthy?8, to compute the inviscid
flux terms. The implicit operator is formed using Steger’sz9 flux vector splitting with the resulting
system of equations inverted by application of Whitfield’s30 two—pass or modified two—pass algo-

rithm. The modified two—pass algorithm was applied in this computation.

Viscous fluxes were added as an explicit source term patterned after the implementation in the
PARC3D?2! Navier-Stokes code. The viscous portion of the Reynolds—averaged Navier-Stokes
equations can be expressed in nondimensional conservation law form as

1%

Re 6&;
As usual, the Reynolds number, Re, is defined by reference sound speed, length, density, and vis-

cousity. The viscous flux vectors are defined as

0
Wlix — 4;
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where J is the Jacobian of the coordinate transformation. The viscous stress tensor and the heat flux

vector are defined as

aﬁj[% N auk] N 9, um

Tj = Mz, | ox,  ox; 3X; 0%m
o= -—K o; o7
i = T = DP,ox,ax

The viscous flux is then approximated ateach cell face in a series of directional sweeps with the result

summed into the residual computed for the original Euler algorithm.

The turbulence model applied is also based upon the algebraic model implemented in the PARC3D
Navier—Stokes code. In wall-bounded regions of the flow field, a Baldwin-Lomax3? algebraic
model of turbulent viscosity is applied. In regions not bounded by a solid surface, a vorticity based
model, as developed by Thomas3?, isapplied. In this algebraic model, viscosity and thermal conduc-

tivity are modified as a function of turbulent viscosity as

Proal = K T HT

Ktotal = K + E_T_'_

P, P, P,
Ur = Reol’w

where i is the turbulent viscosity, P,r is the turbulent Prandtl number, [ is a turbulent length scale,

and w is the local vorticity.
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B

NOMENCLATURE

speed of sound

area

right-hand-side vector

skin friction

constant volume specific heat

function used in dissipation model; also used as constant for inflow boundary conditions

dissipation integral
internal energy
total energy

scalar function
vector function

function used in dissipation model; also denotes viscous flux vector

channel half-height
“incompressible” shape factor 5, /0
shape factor, 3°/6

shape factor, 8,/0

shape factor, 6°/6

thermal conductivity

temporal derivative coefficient matrix
(ij) element of L matrix

Mach number

spatial derivative coefficient matrix
total number of grid points

(ij)t element of N matrix

pressure

Prandtl number

dependent variable vector; also denotes heat flux vector in Navier—Stokes code

function used in dissipation model

radius; also used to denote perfect gas constant

Reynolds number
time coordinate
temperature
velocity

friction velocity (42 = 1.,/0)
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axial coordinate; also used to denote dependent variable in Section I1l.a
coordinate normal to wall

+

s < ¥

+ - Q)’ut)

boundary-layer coordinate (y m

ratio of specific heats

o <
*

displacement thickness

“incompressible” displacement thickness

&
forward difference operator

OaQa‘I

8 3

backward difference operator
momentum thickness

| © b

“incompressible” momentum thickness

*

energy thickness
density thickness

o

eigenvalue; also denotes second coefficient of viscosity
absolute viscosity
CFL number

parameter used in grid stretching; also denotes curvilinear coordinate used in Navier-Stokes
code

density
shear stress

ot € E > D D D

function used in dissipation model
vorticity
Subscripts

e boundary-layer “edge”, or inviscid core value

g & < ©

i axial index

m iteration parameter

max denotes a maximum value

n denotes the n'! equation or dependent variable; also denotes time level
ref reference condition

T denotes a turbulent quantity

0 stagnation condition

w wall

o reference condition

Superscripts

k 0 for planar flow, 1 for axisymmetric
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M signifies Mach number used as dependent variable and T ¢ # constant
P signifies pressure used as dependent vanable and Ty # constant
A dimensional quantity
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